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Abstract

We study the magnetization reversal of a two-particle system with partial exchange coupling. We assume that the particles are discs and
that the exchange coupling occurs through one of their plane faces extending up to 5lw into each particle (lw = (A/K)1/2). The easy axis of
particle 1 coincides with the direction of the applied magnetic fieldH and the one corresponding to particle 2 is such that both easy axis are
parallel to the contact face.

We assume that the spins reorientation across the contact plane is similar to that of a Bloch wall. We write the free energyE of the system
in terms of the fractionβ of volume affected by exchange coupling, taking into account the anisotropy and exchange energies due to the spin
reorientation and to the fraction (1-β) of non-interacting particles’ volume. For a given volumeV the fractionβ can be varied by sliding one
particle with respect to the other, changing only the contact area.

We calculate the ratioE/KV as function ofH considering the easy axis of particle 2 at different angles with respect to the easy axis of
particle 1. We determine magnetic moments switching paths together with the energy barrier�E for switching. We find a general expression
of the form�E/KV = (1 − H/H0)

z, with H0 = H0(β, ω) andz = z0 + α(ω)β, beingz0 andH0(0, ω) equal to the values for non-interacting
particles.

We discuss the switching behavior as a function ofω andH.
© 2003 Elsevier B.V. All rights reserved.
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In a recent work, Bercoff et al. studied the effect of dif-
ferent sintering processes on the magnetic properties of Ba
hexaferrite nanoparticles[1]. By constructing the Preisach
distribution function of different particulate systems they
showed evidence pointing towards partial exchange coupling
as the mechanism responsible for the apparition of details
in the distribution function which could not be explained
by other type of interactions. In the present work, our aim
is to analyze in detail the magnetic behavior of partially
exchange-coupled nanoparticles under the influence of an
external magnetic field. Our treatment is similar to the one
made by Chen et al. for single domain particles with dipo-
lar coupling[2] and resembles the approach made by Neu
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et al [3]. This type of information would be extremely valu-
able for the modelling of magnetic information storage in
recording media[4].

Our system consists of two disc-shaped nanoparticles that
make contact through one of their plane faces and with ex-
change coupling between the atoms located in the boundary
region, as shown in the scheme ofFig. 1. Our aim is to study
partial exchange coupling and for this reason the height of
the disc-shaped particles is assumed to be higher than or at
least equal to the extension of the exchange-coupled region.
In order to vary the fraction of the exchange-coupled region
maintaining constant the particle volume, sliding of one par-
ticle onto the other is allowed and the volume fractionβ of
the exchange-coupled volume can be defined as contact area
times the extensionL (or height) of the exchange-coupled
volume divided by the particle’s volumeV = area× L/V .
The limit β = 1 is obtained when the height of the
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Fig. 1. Geometrical arrangement of particles 1 and 2.

Fig. 2. Contour plot ofET. Darker shading corresponds to lower levels
of energy. (a)β = 0.3 andh = 0.3. The two energy barriers�E1 and
�E2 for particles 1 and 2 are marked with1 and 2, respectively. (b)
β = 0.3 andh = 0.53. Dashed and dotted lines are the inversion paths
when thermal activation occurs.

particle is equal toL and there is contact with all the
face. We also assume that there is perfect contact between
the two grains, to avoid the introduction of an undefined
parameter.

In order to introduce the basic ideas of our treatment, let us
consider that our particles have the same volumeV, uniaxial
anisotropy described by the constantK, saturation magneti-
zationMS and exchange constantA. Their anisotropy axes
form an angleω between them and both of them are paral-
lel to the contact plane. The applied magnetic fieldH points
parallel to the anisotropy axis of particle 1. The free energy
ET of the system per unit area of the contact plane at 0 K

Fig. 3. Contour plot ofET. Darker shading corresponds to lower levels
of energy. (a)β = 1 andh = 0.3. The two energy barriers�E1 and�E2

are marked with1 and 2, respectively. (b)β = 1 andh = 0.58. Dashed
and dotted lines are the inversion paths when thermal activation occurs.
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can be expressed as

ET =
∫ +D

−D

[
A

(
dθ

dx

)2

+ K sin2(θ − ωi)

]
dx

− MSH

∫ +D

−D

cos(θ − π) dx,

where D is the height of each particle. The angleθ(x)
takes the valuesθ1(x) for x < 0 (particle 1) andθ2(x)
for x > 0 (particle 2) and the angleωi is ω1 = 0 (par-
ticle 1) and ω2 = ω (particle 2). Those are the angles
formed by the magnetic moments of particles 1 and 2,
respectively, with the easy axis of particle 1 as function
of their distance to the contact plane (x = 0). As θ1 will
vary between 0 andπ, and θ2 between−ω and (ω + π),
we will simplify our treatment. Instead of calculating the
distribution of magnetic moments by minimizing the free
energy for each pair of angles, we will assume that the
distribution of magnetic moments in the exchange-coupled
region is like the one associated with a Bloch domain
wall [5]:

θ(x) − θ(x = −∞)

θ(x = +∞) − θ(x = −∞)
= arcsin

[
coth

(
x

lw

)]−1

,

where lw = (A/K)1/2 is the appropriate scale length in
this case. Under these assumptions we calculatedET(θ1, θ2,
h)/KV as function ofβ between 0.1 and 1 andω = π/6.
Hereh is the reduced magnetic field (h = H/HK) andHK
is the anisotropy field. We chose the angleω = π/6 as it is
the mean orientation value for a random distribution of easy
axis orientations.

Fig. 2ashows the results forβ = 0.3, h = 0.3. In this
case, the particles remain in the initial stable positionθ1 =
0, θ2 = ω. Two energy barriers separate this state from

Fig. 4. Magnetic moments switching paths for differentβ when the energy barrier is zero.

others with less energy:�E1 (marked 1) involves changing
θ1 while θ2 remains constant and�E2 (marked 2) involves
changingθ2 while θ1 remains constant. It is�E2 < �E1,
so, if thermal activation occurs, an inversion path through
the energy barrier�E2 (dashed line inFig. 2a) will be more
likely than through�E1 (dotted line inFig. 2b), but in ei-
ther case the inversion of the magnetic moments of the first
particle will not induce the other to follow and invert too.
Each particle will proceed independently from the other.
The difference between�E1 and�E2 becomes lower and
lower ash increases. When�E2 = 0, it is h = h0 =
0.53, the inversion field for particle 2. The inversion path
proceeds by firstθ2 going to (ω + π), to a shallow mini-
mum, and thenθ1 going toπ through a small energy bar-
rier. Particle 2 inverts first and then particle 1, right after
(Fig. 2b).

The extreme caseβ = 1 with h = 0.3 is shown in
Fig. 3a. The two energy barriers�E1 and �E2 are now
equal and thermal activation of one of them proceeds inde-
pendently from the other. But when one of them is activated
through its energy barrier the other immediately follows be-
cause no intermediate minimum is found in this case. So
both of them invert their magnetic moments in a coordinated
way.

The caseβ = 1 with h = 0.58 is shown inFig. 3b,
where the energy barrier is zero and both particles pro-
ceed following an inversion path where both of them
invert their magnetic moments at the same time, in a
cooperative manner.Fig. 4 shows the inversion path fol-
lowed by θ1 and θ2 for each β value, when the en-
ergy barrier is zero. For lowβ the particles invert their
magnetization independently and forβ ≥ 0.7, they act
cooperatively.

At temperatureT = 0 K, magnetization reversal occurs at
a reduced fieldh0 and is a function ofβ. The energy barrier
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�E2 is the one that controls this process and it is

�E2

(
h, β, w = π

6

)
= KV

(
1 − H

h0(β)

)z(β)

,

whereh0(β) = h0(β = 0) + 0.025β + 0.007β2 + 0.033β3

andz(β) = z(β = 0) + 0.030β.

The valuesh0(β = 0) = 0.522 andz(β = 0) = 1.48 are
obtained by fitting the calculated�E2 as a function ofH
and coincide with those found by Pfeiffer for non interacting
single domain particles[6].

The results obtained in the calculation of the energy bar-
riers show that for a small interaction volume, each particle
inverts its magnetization independently form the other. As
the fraction of interaction volume increases, cooperative ef-
fects start to be evident and the two particles invert their
magnetization in a cooperative way.

The energy barriers found in this work are useful for the
modeling of magnetic systems of partially exchange-coupled
particles.

References

[1] P.G. Bercoff, M.I. Oliva, E. Bordone, H.R. Bertorello, Physica B 320
(2002) 291–293.

[2] W. Chen, S. Zhang, H. Neal Bertram, J. Appl. Phys. 71 (1992) 5579–
5584.

[3] V. Neu, A. Hubert, L. Schultz, J. Magn. Magn. Mat. 189 (1998)
391.

[4] M.P. Sharrock, IEEE Trans. Mag. 35 (6) (1999) 4414.
[5] G. Bertotti, Hysteresis in Magnetism, Academic Press, New York,

1998.
[6] H. Pfeiffer, Phys. Status Solidi A 118 (1990) 295–306.


